Муниципальное общеобразовательное учреждение средняя общеобразовательная школа № 1 имени 397-й Сарненской дивизии города Аткарска Саратовской области (МОУ- СОШ № 1 г. Аткарска)

412420, Саратовская область, г. Аткарск, ул. Ленина, д.116, тел.8(845-52) 3-15-57 E-mail: atkschool1@mail.ru ОКПО 36222414 ОГРН 1026401379531ИНН6438901666КПП 643801001

PACCMOTPEHA

на заседании профессионального сообщества учителей естественно-научного и физико-математического направления МОУ-СОШ № 1 г. Аткарска протокол от 27.08.2022 № 1

СОГЛАСОВАНО

Заместитель директора по учебно-воспитательной работе.

_____ Л.В. Милякова

УТВЕРЖДЕНА приказом МОУ-СОШ № 1 г. Аткарска от 31.08.2022 № 122-о

Рабочая программа учебного предмета «Физика» основного общего образования учителя первой квалификационной категории Илларионовой Натальи Викторовны

Рассмотрено на заседании педагогического совета протокол от 27.08.2022 № 1

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа реализуется в учебниках А. В. Перышкина «Физика» для 7, 8 классов и А. В. Перышкина, Е. М. Гутник «Физика» для 9 класса. Программа составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам обучения, представленных в Стандарте основного общего образования. Программа определяет содержание и структуру учебного материала, последовательность его изучения, пути формирования системы знаний, умений и способов деятельности, развития, воспитания и социализации учащихся.

Общая характеристика учебного предмета

Школьный курс физики — системообразующий для естественнонаучных предметов, поскольку физические законы, лежащие в основе мироздания, являются основой содержания курсов химии, биологии, географии и астрономии. Физика вооружает школьников научным методом познания,позволяющим получать объективные знания об окружающем мире. В 7 и 8 классах происходит знакомство с физическими явлениями, методом научного познания, формирование основных физических понятий, приобретение умений измерять физические величины, проводить лабораторный эксперимент по заданной схеме. В 9 классе начинается изучение основных физических законов, лабораторные работы становятся более сложными, школьники учатся планировать эксперимент самостоятельно.

Цели изучения физики в основной школе следующие:

- усвоение учащимися смысла основных понятий и законов физики, взаимосвязи между ними;
- формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;
- систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации;
- формирование убежденности в познаваемости окружающего мира и достоверности научных методов его изучения; организация экологического мышления и ценностного отношения к природе;
- развитие познавательных интересов и творческих способностей учащихся, а также интереса к расширению и углублению физических знаний и выбора физики как профильного предмета.

Достижение целей обеспечивается решением следующих задач:

- знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;
- приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;
- формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
- овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;
- понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

Место предмета в учебном плане

В основной школе физика изучается с 7 по 9 класс. Учебный план составляет 202 учебных часов, в том числе в 7, 8, 9-х классах из расчета 2 учебных часа в неделю: 7 класс – 68 ч., 8 кл. – 68 ч., 9 кл. – 66 ч. за год. В свою очередь, содержание курса физики основной школы, являясь

базовым звеном в системе непрерывного естественнонаучного образования, служит основой для последующей уровневой и профильной дифференциации.

РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА

Личностными результатами обучения физике в основной школе являются:

- сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности школьников на основе личностно-ориентированного полхола:
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем; формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

СОДЕРЖАНИЕ КУРСА

7 класс (68 ч., 2 ч в неделю)

Введение

Физика — наука о природе. Физические явления. Физические свойства тел. Наблюдение и описание физических явлений. Физические величины. Измерения физических величин: длины, времени, температуры. Физические приборы. Международная система единиц. Точность и погрешность измерений. Физика и техника.

ФРОНТАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА

1. Определение цены деления измерительного прибора.

- понимание физических терминов: тело, вещество, материя;
- умение проводить наблюдения физических явлений; измерять физические величины: расстояние, промежуток времени, температуру;
- владение экспериментальными методами исследования при определении цены деления шкалы прибора и погрешности измерения;
- понимание роли ученых нашей страны в развитии современной физики и влиянии на технический и социальный прогресс.

Первоначальные сведения о строении вещества

Строение вещества. Опыты, доказывающие атомное строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия в газах, жидкостях и твердых телах. Взаимодействие частиц вещества. Агрегатные состояния вещества. Модели строения твердых тел, жидкостей и газов. Объяснение свойств газов, жидкостей и твердых тел на основе молекулярно-кинетических представлений.

ФРОНТАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА

2. Определение размеров малых тел.

Предметными результатами обучения по данной теме являются:

- понимание и способность объяснять физические явления: диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел;
- владение экспериментальными методами исследования при определении размеров малых тел
- понимание причин броуновского движения, смачивания и несмачивания тел; различия в молекулярном строении твердых тел, жидкостей и газов;
- умение пользоваться СИ и переводить единицы измерения физических величин в кратные и дольные единицы;
- умение использовать полученные знания в повседневной жизни (быт, экология, охрана окружающей среды).

Взаимодействия тел

Механическое движение. Траектория. Путь. Равномерное и неравномерное движение. Скорость. Графики зависимости пути и модуля скорости от времени движения. Инерция. Инертность тел. Взаимодействие тел. Масса тела. Измерение массы тела. Плотность вещества. Сила. Сила тяжести. Сила упругости. Закон Гука. Вес тела. Связь между силой тяжести и массой тела. Сила тяжести на других планетах. Динамометр. Сложение двух сил, направленных по одной прямой. Равнодействующая двух сил. Сила трения. Физическая природа небесных тел Солнечной системы.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 3. Измерение массы тела на рычажных весах.
- 4. Измерение объема тела.
- 5. Определение плотности твердого тела.
- 6. Градуирование пружины и измерение сил динамометром.
- 7. Измерение силы трения с помощью динамометра.

- понимание и способность объяснять физические явления: механическое движение, равномерное и неравномерное движение, инерция, всемирное тяготение;
- умение измерять скорость, массу, силу, вес, силу трения скольжения, силу трения качения, объем, плотность тела, равнодействующую двух сил, действующих на тело и направленных в одну и в противоположные стороны;
- владение экспериментальными методами исследования зависимости: пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести тела от его массы, силы трения скольжения от площади соприкосновения тел и силы нормального давления;
- понимание смысла основных физических законов: закон всемирного тяготения, закон Гука;

- владение способами выполнения расчетов при нахождении: скорости (средней скорости), пути, времени, силы тяжести, веса тела, плотности тела, объема, массы, силы упругости, равнодействующей двух сил, направленных по одной прямой;
- умение находить связь между физическими величинами: силой тяжести и массой тела, скорости со временем и путем, плотности тела с его массой и объемом, силой тяжести и весом тела;
- умение переводить физические величины из несистемных в СИ и наоборот;
- понимание принципов действия динамометра, весов, встречающихся в повседневной жизни, и способов обеспечения безопасности при их использовании;
- умение использовать полученные знания в повседневной жизни (быт, экология, охрана окружающей среды).

Давление твердых тел, жидкостей и газов

Давление. Давление твердых тел. Давление газа. Объяснение давления газа на основе молекулярно-кинетических представлений. Передача давления газами и жидкостями. Закон Паскаля. Сообщающиеся сосуды. Атмосферное давление. Методы измерения атмосферного давления. Барометр, манометр, поршневой жидкостный насос. Закон Архимеда. Условия плавания тел. Воздухоплавание.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 8. Определение выталкивающей силы, действующей на погруженное в жидкость тело.
- 9. Выяснение условий плавания тела в жидкости.

Предметными результатами обучения по данной теме являются:

- понимание и способность объяснять физические явления: атмосферное давление, давление жидкостей, газов и твердых тел, плавание тел, воздухоплавание, расположение уровня жидкости в сообщающихся сосудах, существование воздушной оболочки Землю; способы уменьшения и увеличения давления;
- умение измерять: атмосферное давление, давление жидкости на дно и стенки сосуда, силу Архимеда;
- владение экспериментальными методами исследования зависимости: силы Архимеда от объема вытесненной телом воды, условий плавания тела в жидкости от действия силы тяжести и силы Архимеда;
- понимание смысла основных физических законов и умение применять их на практике: закон Паскаля, закон Архимеда;
- понимание принципов действия барометра-анероида, манометра, поршневого жидкостного насоса, гидравлического пресса и способов обеспечения безопасности при их использовании;
- владение способами выполнения расчетов для нахождения: давления, давления жидкости на дно и стенки сосуда, силы Архимеда в соответствии с поставленной задачей на основании использования законов физики;
- умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды).

Работа и мощность. Энергия.

Механическая работа. Мощность. Простые механизмы. Момент силы. Условия равновесия рычага. «Золотое правило» механики. Виды равновесия. Коэффициент полезного действия (КПД). Энергия. Потенциальная и кинетическая энергия. Превращение энергии.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 10. Выяснение условия равновесия рычага.
- 11. Определение КПД при подъеме тела по наклонной плоскости.

- понимание и способность объяснять физические явления: равновесие тел, превращение одного вида механической энергии в другой;
- умение измерять: механическую работу, мощность, плечо силы, момент силы, КПД, потенциальную и кинетическую энергию;

- владение экспериментальными методами исследования при определении соотношения сил и плеч, для равновесия рычага;
- понимание смысла основного физического закона: закон сохранения энергии;
- понимание принципов действия рычага, блока, наклонной плоскости и способов обеспечения безопасности при их использовании;
- владение способами выполнения расчетов для нахождения: механической работы, мощности, условия равновесия сил на рычаге, момента силы, КПД, кинетической и потенциальной энергии; умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды).

8 класс (68 ч., 2 ч в неделю)

Тепловые явления

Тепловое движение. Тепловое равновесие. Температура. Внутренняя энергия. Работа и теплопередача. Теплопроводность. Конвекция. Излучение. Количество теплоты. Удельная теплоемкость. Расчет количества теплоты при теплообмене. Закон сохранения и превращения энергии в механических и тепловых процессах. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Кипение. Влажность воздуха. Удельная теплота парообразования. Объяснение изменения агрегатного состояния вещества на основе молекулярно-кинетических представлений. Преобразование энергии в тепловых машинах. Двигатель внутреннего сгорания. Паровая турбина. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 1. Сравнение количеств теплоты при смешивании воды разной температуры.
- 2. Измерение удельной теплоемкости твердого тела.
- 3. Измерение влажности воздуха.

Предметными результатами обучения по данной теме являются:

- понимание и способность объяснять физические явления: конвекция, излучение, теплопроводность, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, испарение (конденсация) и плавление (отвердевание) вещества, охлаждение жидкости при испарении, кипение, выпадение росы;
- умение измерять: температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха;
- владение экспериментальными методами исследования: зависимости относительной влажности воздуха от давления водяного пара, содержащегося в воздухе при данной температуре; давления насыщенного водяного пара; определения удельной теплоемкости вещества;
- понимание принципов действия конденсационного и волосного гигрометров, психрометра, двигателя внутреннего сгорания, паровой турбины и способов обеспечения безопасности при их использовании;
- понимание смысла закона сохранения и превращения энергии в механических и тепловых процессах и умение применять его на практике;
- овладение способами выполнения расчетов для нахождения: удельной теплоемкости, количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении, удельной теплоты сгорания топлива, удельной теплоты плавления, влажности воздуха, удельной теплоты парообразования и конденсации, КПД теплового двигателя;
- умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды).

Электрические явления

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Проводники, диэлектрики и полупроводники. Электрическое поле. Закон сохранения электрического заряда. Делимость электрического заряда. Электрон. Строение атома.

Электрический ток. Действие электрического поля на электрические заряды. Источники тока. Электрическая цепь. Сила тока. Электрическое напряжение. Электрическое сопротивление. Закон Ома для участка цепи. Последовательное и параллельное соединение проводников. Работа и мощность электрического тока. Закон Джоуля—Ленца. Конденсатор. Правила безопасности при работе с электроприборами.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 4. Сборка электрической цепи и измерение силы тока в ее различных участках.
- 5. Измерение напряжения на различных участках электрической цепи.
- 6. Регулирование силы тока реостатом.
- 7. Измерение сопротивления проводника при помощи амперметра и вольтметра.
- 8. Измерение мощности и работы тока в электрической лампе.

Предметными результатами обучения по данной теме являются:

- понимание и способность объяснять физические явления: электризация тел, нагревание проводников электрическим током, электрический ток в металлах, электрические явления с позиции строения атома, действия электрического тока;
- умение измерять: силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление;
- владение экспериментальными методами исследования зависимости: силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала;
- понимание смысла основных физических законов и умение применять их на практике: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца;
- понимание принципа действия электроскопа, электрометра, гальванического элемента, аккумулятора, фонарика, реостата, конденсатора, лампы накаливания и способов обеспечения безопасности при их использовании;
- владение способами выполнения расчетов для нахождения: силы тока, напряжения, сопротивления при параллельном и последовательном соединении проводников, удельного сопротивления проводника, работы и мощности электрического тока, количества теплоты, выделяемого проводником с током, емкости конденсатора, работы электрического поля конденсатора, энергии конденсатора;
- умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды, техника безопасности).

Электромагнитные явления

Опыт Эрстеда. Магнитное поле. Магнитное поле прямого тока. Магнитное поле катушки с током. Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли. Взаимодействие магнитов. Действие магнитного поля на проводник с током. Электрический пвигатель.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 9. Сборка электромагнита и испытание его действия.
- 10. Изучение электрического двигателя постоянного тока (на модели).

Предметными результатами обучения по данной теме являются:

- понимание и способность объяснять физические явления: намагниченность железа и стали, взаимодействие магнитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током;
- владение экспериментальными методами исследования зависимости магнитного действия катушки от силы тока в цепи;
- умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды, техника безопасности).

Световые явления

Источники света. Прямолинейное распространение света. Видимое движение светил. Отражение света. Закон отражения света. Плоское зеркало. Преломление света. Закон преломления света.

Линзы. Фокусное расстояние линзы. Оптическая сила линзы. Изображения, даваемые линзой. Глаз как оптическая система. Оптические приборы.

ФРОНТАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА

11. Получение изображения при помощи линзы.

Предметными результатами обучения по данной теме являются:

- понимание и способность объяснять физические явления: прямолинейное распространение света, образование тени и полутени, отражение и преломление света;
- умение измерять фокусное расстояние собирающей линзы, оптическую силу линзы;
- владение экспериментальными методами исследования зависимости: изображения от расположения лампы на различных расстояниях от линзы, угла отражения от угла падения света на зеркало;
- понимание смысла основных физических законов и умение применять их на практике: закон отражения света, закон преломления света, закон прямолинейного распространения света;
- различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой;
- умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды).

9 класс (66 ч., 2 ч в неделю)

Законы взаимодействия и движения тел

Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. Импульс. Закон сохранения импульса. Реактивное движение.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 1. Исследование равноускоренного движения без начальной скорости.
- 2. Измерение ускорения свободного падения.

- понимание и способность описывать и объяснять физические явления: поступательное движение, смена дня и ночи на Земле, свободное падение тел, невесомость, движение по окружности с постоянной по модулю скоростью;
- знание и способность давать определения/описания физических понятий: относительность движения, геоцентрическая и гелиоцентрическая системы мира, реактивное движение; физических моделей: материальная точка, система отсчета; физических величин: перемещение, скорость равномерного прямолинейного движения, мгновенная скорость и ускорение при равноускоренном прямолинейном движении, скорость и центростремительное ускорение при равномерном движении тела по окружности, импульс;
- понимание смысла основных физических законов: законы Ньютона, закон всемирного тяготения, закон сохранения импульса, закон сохранения энергии и умение применять их на практике; — умение приводить примеры технических устройств и живых организмов, в основе перемещения которых лежит принцип реактивного движения; знание и умение объяснять устройство и действие космических ракет-носителей;
- умение измерять: мгновенную скорость и ускорение при равноускоренном прямолинейном движении, центростремительное ускорение при равномерном движении по окружности;
- умение использовать полученные знания в повседневной жизни (быт, экология, охрана окружающей среды).

Механические колебания и волны. Звук.

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. [Гармонические колебания]. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. Интерференция звука.

ФРОНТАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА

3. Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити

Предметными результатами обучения по данной теме являются:

- понимание и способность описывать и объяснять физические явления: колебания математического и пружинного маятников, резонанс (в том числе звуковой), механические волны, длина волны, отражение звука, эхо;
- знание и способность давать определения физических понятий: свободные колебания, колебательная система, маятник, затухающие колебания, вынужденные колебания, звук и условия его распространения; физических величин: амплитуда, период и частота колебаний, собственная частота колебательной системы, высота, тембр, громкость звука, скорость звука; физических моделей: гармонические колебания, математический маятник;
- владение экспериментальными методами исследования зависимости периода и частоты колебаний маятника от длины его нити.

Электромагнитное поле.

Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. Интерференция света. Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. Спектрограф и спектроскоп. Типы оптических спектров. Спектральный анализ. Поглощение и испускание света атомами. Происхождение линейчатых спектров.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 4. Изучение явления электромагнитной индукции.
- 5. Наблюдение сплошного и линейчатых спектров испускания.

- понимание и способность описывать и объяснять физические явления/процессы:
 электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощение и испускание света атомами, возникновение линейчатых спектров испускания и поглощения;
- знание и способность давать определения/описания физических понятий: магнитное поле, линии магнитной индукции, однородное и неоднородное магнитное поле, магнитный поток, переменный электрический ток, электромагнитное поле, электромагнитные волны, электромагнитные колебания, радиосвязь, видимый свет; физических величин: магнитная индукция, индуктивность, период, частота и амплитуда электромагнитных колебаний, показатели преломления света;
- знание формулировок, понимание смысла и умение применять закон преломления света и правило Ленца, квантовых постулатов Бора;

- знание назначения, устройства и принципа действия технических устройств:
 электромеханический индукционный генератор переменного тока, трансформатор, колебательный контур, детектор, спектроскоп, спектрограф;
- понимание сути метода спектрального анализа и его возможностей.

Строение атома и атомного ядра.

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Экспериментальные методы исследования частиц. Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения для альфа- и бета-распада при ядерных реакциях. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 6. Измерение естественного радиационного фона дозиметром.
- 7. Изучение деления ядра атома урана по фотографии треков.
- 8. Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.
- 9. Изучение треков заряженных частиц по готовым фотографиям.

Предметными результатами обучения по данной теме являются:

- понимание и способность описывать и объяснять физические явления: радиоактивность, ионизирующие излучения;
- знание и способность давать определения/описания физических понятий: радиоактивность, альфа-, бета- и гамма-частицы; физических моделей: модели строения атомов, предложенные Д. Томсоном и Э. Резерфордом; протоннонейтронная модель атомного ядра, модель процесса деления ядра атома урана; физических величин: поглощенная доза излучения, коэффициент качества, эквивалентная доза, период полураспада;
- умение приводить примеры и объяснять устройство и принцип действия технических устройств и установок: счетчик Гейгера, камера Вильсона, пузырьковая камера, ядерный реактор на медленных нейтронах;
- умение измерять: мощность дозы радиоактивного излучения бытовым дозиметром; знание формулировок, понимание смысла и умение применять: закон сохранения массового числа, закон сохранения заряда, закон радиоактивного распада, правило смещения;
- владение экспериментальными методами исследования в процессе изучения зависимости мощности излучения продуктов распада радона от времени;
- понимание сути экспериментальных методов исследования частиц;
- умение использовать полученные знания в повседневной жизни (быт, экология, охрана окружающей среды, техника безопасности и др.).

Строение и эволюция Вселенной.

Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной. *Предметными результатами* обучения по данной теме являются:

- представление о составе, строении, происхождении и возрасте Солнечной системы;
- умение применять физические законы для объяснения движения планет Солнечной системы;
- знать, что существенными параметрами, отличающими звезды от планет, являются их массы и источники энергии (термоядерные реакции в недрах звезд и радиоактивные в недрах планет);
- сравнивать физические и орбитальные параметры планет земной группы с соответствующими параметрами планет-гигантов и находить в них общее и различное;
- объяснять суть эффекта X. Доплера; формулировать и объяснять суть закона Э. Хаббла, знать, что этот закон явился экспериментальным подтверждением модели нестационарной Вселенной, открытой А. А. Фридманом.

Нормы оценивания учебного предмета «Физика»

Оценка ответов учащихся при проведении устного опроса

Оценка "5" ставится в следующем случае:

- ответ ученика полный, самостоятельный, правильный, изложен литературным языком в определенной логической последовательности, рассказ сопровождается новыми примерами;
- учащийся обнаруживает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теории, дает точное определение и истолкование основных понятий, законов, теорий, правильное определение физических величин, их единиц и способов измерения;
- учащийся умеет применить знания в новой ситуации при выполнении практических заданий, знает основные понятия и умеет оперировать ими при решении задач, правильно выполняет чертежи, схемы и графики, сопутствующие ответу; может установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов; владеет знаниями и умениями в объеме 95% 100% от требований программы.

Оценка "4" ставится в следующем случае:

- ответ удовлетворяет основным требованиям к ответу на оценку "5", но содержит неточности в изложении фактов, определений, понятии, объяснении взаимосвязей, выводах и решении задач. Неточности легко исправляются при ответе на дополнительные вопросы;
- учащийся не использует собственный план ответа, затрудняется в приведении новых примеров, и применении знаний в новой ситуации, слабо использует связи с ранее изученным материалом и с материалом, усвоенным при изучении других предметов;
- объем знаний и умений учащегося составляют 80-95% от требований программы.

Оценка "3" ставится в следующем случае:

- большая часть ответа удовлетворяет требованиям к ответу на оценку "4", но в ответе обнаруживаются отдельные пробелы, не препятствующие дальнейшему усвоению программного материала;
- учащийся обнаруживает понимание учебного материала при недостаточной полноте усвоения понятий или непоследовательности изложения материала, умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении качественных задач и задач, требующих преобразования формул;
- учащийся владеет знаниями и умениями в объеме не менее 80 % содержания, соответствующего программным требованиям.

Оценка "2" ставится в следующем случае:

- ответ неправильный, показывает незнание основных понятий, непонимание изученных закономерностей и взаимосвязей, неумение работать с учебником, решать количественные и качественные задачи;
- учащийся не овладел основными знаниями и умениями в соответствии с требованиями программы;
- учащийся не владеет знаниями в объеме требований на оценку "3".

Оценка ответов учащихся при проведении самостоятельных и контрольных работ Оценка "5" ставится в следующем случае:

 работа выполнена полностью; - сделан перевод единиц всех физических величин в «СИ», все необходимые данные занесены в условие, правильно выполнены чертежи, схемы, графики, рисунки, сопутствующие решению задач, сделана проверка по наименованиям, правильно проведены математические расчеты и дан полный ответ;

- на качественные и теоретические вопросы дан полный, исчерпывающий ответ литературным языком в определенной логической последовательности, учащийся приводит новые примеры, устанавливает связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов, умеет применить знания в новой ситуации;
- учащийся обнаруживает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий, законов, теорий, а также правильное определение физических величин, их единиц и способов измерения.

Оценка "4" ставится в следующем случае:

- работа выполнена полностью или не менее чем на 80 % от объема задания, но в ней имеются недочеты и несущественные ошибки;
- ответ на качественные и теоретические вопросы удовлетворяет вышеперечисленным требованиям, но содержит неточности в изложении фактов, определений, понятий, объяснении взаимосвязей, выводах и решении задач;
- учащийся испытывает трудности в применении знаний в новой ситуации, не в достаточной мере использует связи с ранее изученным материалом и с материалом, усвоенным при изучении других предметов.

Оценка "3" ставится в следующем случае:

- работа выполнена в основном верно (объем выполненной части составляет не менее 2/3 от общего объема), но допущены существенные неточности;
- учащийся обнаруживает понимание учебного материала при недостаточной полноте усвоения понятий и закономерностей;
- умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении качественных задач и сложных количественных задач, требующих преобразования формул.

Оценка "2" ставится в следующем случае:

- работа в основном не выполнена (объем выполненной части менее 2/3 от общего объема задания);
- учащийся показывает незнание основных понятий, непонимание изученных закономерностей и взаимосвязей, не умеет решать количественные и качественные задачи.

Оценка ответов учащихся при проведении лабораторных работ

Оценка "5" ставится в следующем случае:

- лабораторная работа выполнена в полном объеме с соблюдением необходимой последовательности проведения опытов и измерении;
- учащийся самостоятельно и рационально смонтировал необходимое оборудование, все опыты провел в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдал требования безопасности труда;
- в отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполнил анализ погрешностей.

<u>Оценка "4"</u> ставится в следующем случае: выполнение лабораторной работы удовлетворяет основным требованиям к ответу на оценку "5", но учащийся допустил недочеты или негрубые ошибки, не повлиявшие на результаты выполнения работы.

<u>Оценка "3"</u> ставится в следующем случае: результат выполненной части лабораторной работы таков, что позволяет получить правильный вывод, но в ходе проведения опыта и измерений были допущены ошибки.

<u>Оценка "2"</u> ставится в следующем случае: результаты выполнения лабораторной работы не позволяют сделать правильный вывод, измерения, вычисления, наблюдения производились неправильно.

Примечания. Во всех случаях оценка снижается, если ученик не соблюдал требований техники безопасности при проведении эксперимента. В тех случаях, когда учащийся показал оригинальный подход к выполнению работы, но в отчете содержатся недостатки, оценка за выполнение работы, по усмотрению учителя, может быть повышена по сравнению с указанными нормами.

Тестовый контроль

Целью тестовых заданий является возможность выявления знаний, умений, навыков каждого испытуемого, поэтому в качестве интерпретационной системы отсчета используется конкретная для определенной возрастной группы учащихся область содержания данного учебного предмета. Задания тестов разработаны в двух формах: - закрытые задания (задания с выбором ответов, при которых испытуемый выбирает правильный ответ из числа готовых, прилагаемых в задании теста (как правило 3-4 варианта). - открытые задания (задания, в которых испытуемый сам формулирует ответ). При тестировании все верные ответы берутся за 100%, тогда отметка выставляется в соответствии с таблицей:

Процент выполнения задания	Отметка
95% и более	отлично
75-94%%	хорошо
50-74%%	удовлетворительно
менее 50%	неудовлетворительно

Перечень ошибок

Грубые ошибки:

- незнание определений основных понятий, законов, правил, основных положений теории, формул, общепринятых символов обозначения физических величии, единиц их измерения; неумение выделить в ответе главное;
- неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы задачи или неверные объяснения хода ее решения; незнание приемов решения задач, аналогичных ранее решенным в классе, ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения;
- неумение читать и строить графики и принципиальные схемы; неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты, или использовать полученные данные для выводов;
- небрежное отношение к лабораторному оборудованию и измерительным приборам; неумение определить показание измерительного прибора;
- нарушение требований правил безопасного труда при выполнении эксперимента.

Негрубые ошибки:

- неточности формулировок, определений, понятий, законов, теорий, вызванные неполнотой охвата основных признаков определяемого понятия, ошибки, вызванные несоблюдением условий проведении опыта или измерений;
- ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем;

 пропуск или неточное написание наименований единиц физических величин; нерациональный выбор хода решения.

Недочеты:

- нерациональные записи при вычислениях, нерациональные приемы вычислении, преобразований и решений задач;
- арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата;
- отдельные погрешности в формулировке вопроса или ответа;
- небрежное выполнение записей, чертежей, схем, графиков;
- орфографические и пунктуационные ошибки.

Учебно-методическое обеспечение

Программа курса физики для 7—9 классов общеобразовательных учреждений (авторы А. В. Перышкин, Н. В. Филонович, Е. М. Гутник).

УМК «Физика. 7 класс»

- 1. Физика. 7 класс. Учебник (автор А. В. Перышкин).
- 2. Физика. Рабочая тетрадь. 7 класс (авторы: Н. К. Ханнанов, Т. А. Ханнанова).
- 3. Физика. Рабочая тетрадь. 7 класс (авторы:В. А. Касьянов, В. Ф. Дмитриева).
- 4. Физика. Тетрадь для лабораторных работ. 7 класс (авторы: Н. В. Филонович, А. Г. Восканян).
- 5. Физика. Методическое пособие. 7 класс (автор Н. В. Филонович).
- 6. Физика. Тесты. 7 класс (авторы: Н. К. Ханнанов, Т. А. Ханнанова).
- 7. Физика. Самостоятельные и контрольные работы. 7 класс (авторы: А. Е. Марон, Е. А. Марон).
- 8. Физика. Дидактические материалы. 7 класс (авторы: А. Е. Марон, Е. А. Марон).
- 9. Физика. Диагностические работы. 7 класс (авторы:В. В. Шахматова, О. Р. Шефер).
- 10. Физика. Сборник вопросов и задач. 7 класс (авторы: А. Е. Марон, Е. А. Марон, С. В. Позойский).
- 11. Электронная форма учебника.

УМК «Физика. 8 класс»

- 1. Физика. 8 класс. Учебник (автор А. В. Перышкин).
- 2. Физика. Рабочая тетрадь. 8 класс (автор Т. А. Ханнанова).
- 3. Физика. Рабочая тетрадь. 8 класс (авторы: В. А. Касьянов, В. Ф. Дмитриева). 4. Физика. Тетрадь для лабораторных работ. 8 класс (авторы: Н. В. Филонович, А. Г. Восканян).
- 4. Физика. Методическое пособие. 8 класс (автор Н. В. Филонович).
- 5. Физика. Тесты. 8 класс (автор Н. И. Слепнева).
- 6. Физика. Самостоятельные и контрольные работы. 8 класс (авторы: А. Е. Марон, Е. А. Марон).
- 7. Физика. Дидактические материалы. 8 класс (авторы: А. Е. Марон, Е. А. Марон).
- 8. Физика. Диагностические работы. 8 класс (авторы:В. В. Шахматова, О. Р. Шефер).
- 9. Физика. Сборник вопросов и задач. 8 класс (авторы: А. Е. Марон, Е. А. Марон, С. В. Позойский)
- 10. Электронная форма учебника.

УМК «Физика. 9 класс»

- 1. Физика. 9 класс. Учебник (авторы: А. В. Перышкин, Е. М. Гутник).
- 2. Физика. Рабочая тетрадь. 9 класс (авторы: Е. М. Гут-ник, И. Г. Власова).
- 3. Физика. Рабочая тетрадь. 9 класс (авторы:В. А. Касьянов, В. Ф. Дмитриева).
- 4. Физика. Тетрадь для лабораторных работ. 9 класс (авторы: Н. В. Филонович, А. Г. Восканян).
- 5. Физика. Методическое пособие. 9 класс (авторы:Е. М. Гутник, О. А. Черникова)

- 6. Физика. Тесты. 9 класс (автор Н. И. Слепнева).
- 7. Физика. Дидактические материалы. 9 класс (авторы: А. Е. Марон, Е. А. Марон).
- 8. Физика. Сборник вопросов и задач. 9 класс (авторы: А. Е. Марон, Е. А. Марон, С. В. Позойский).
- 9. Электронная форма учебника.

СПИСОК НАГЛЯДНЫХ ПОСОБИЙ

Таблицы общего назначения

- 1. Международная система единиц (СИ).
- 2. Приставки для образования десятичных кратных и дольных единиц.
- 3. Физические постоянные.
- 4. Шкала электромагнитных волн.
- 5. Правила по технике безопасности при работе в кабинете физики.
- 6. Меры безопасности при постановке и проведении лабораторных работ по электричеству.
- 7. Порядок решения количественных задач.

Тематические таблицы

- 1. Броуновское движение. Диффузия.
- 2. Измерение температуры.
- 3. Агрегатные состояния вещества.
- 4. Манометр.
- 5. Барометр-анероид.
- 6. Строение атмосферы Земли.
- 7. Атмосферное давление.
- 8. Поверхностное натяжение, капиллярность.
- 9. Плавление, испарение, кипение.
- 10. Кристаллические вещества.
- 11. Внутренняя энергия.
- 12. Теплоизоляционные материалы.
- 13. Двигатель внутреннего сгорания.
- 14. КПД тепловой машины.
- 15. Модели строения атома.
- 16. Схема опыта Резерфорда.
- 17. Цепная ядерная реакция.18. Солнечная система.
- 19. Луна.
- 20. Планеты земной группы.
- 21. Планеты-гиганты.
- 22. Малые тела Солнечной системы.
- 23. Приборы магнитоэлектрической системы.
- 24. Двигатель постоянного тока.
- 25. Трансформатор.
- 26. Энергетическая система.
- 27. Схема гидроэлектростанции.
- 28. Передача и распределение электроэнергии.
- 29. Ядерный реактор.
- 30. Затмения.
- 31. Оптические приборы.
- 32. Глаз как оптическая система.
- 33. Земля планета Солнечной системы. Строение Солнца.
- 34. Звезды.

- 35. Относительность движения.
- 36. Траектория движения.
- 37. Второй закон Ньютона.
- 38. Виды деформаций І.
- 39. Виды деформаций II.
- 40. Реактивное движение.
- 41. Космический корабль «Восток».
- 42. Работа силы.
- 43. Механические волны.

Комплект портретов для кабинета физики

Электронные учебные издания

- 1. Физика. Библиотека наглядных пособий. 7—11 классы (под редакцией Н. К. Ханнанова).
- 2. Лабораторные работы по физике. 7 класс (виртуальная физическая лаборатория).
- 3. Лабораторные работы по физике. 8 класс (виртуальная физическая лаборатория).
- 4. Лабораторные работы по ф. изике укласс (виртуальная физическая лаборатория).